

# Application of Physiologically based Pharmacokinetic Modeling (PBPK) to the Risk Assessment of Malathion Used as Treatment for Head Lice in Children

Predicted pharmaco-

kinetics in children of

different ages

Evans, M.V<sup>1</sup>., Power, F.W<sup>2</sup>., Dary, C.C<sup>2</sup>., Tornero-Velez, R<sup>2</sup>., and Blancato, J.N<sup>2</sup>. 11 NHEERL, US EPA, ORD, ETD, RTP, NC; 2 NERL, US EPA, ORD, EDRB, LV, NV

PBPK models

using rodent data

#### **ENVIRONMENTAL ISSUE**

- •The US EPA needs to address potential health risks which affect children as a susceptible population.
- •A tool is needed that will predict internal target dose and at the same time consider differences between children and adults.
- •This same tool can also be extended to address extrapolation across different routes of exposure.
- •Ovide™ is a shampoo preparation containing the pesticide ingredient, malathion.
- •Within EPA, the Office of Pollution Prevention and Toxics (OPPT) requested ORD scientists for assistance in developing a predictive pharmacokinetics model for this particular application.

#### **OBJECT/STUDY GOAL**

- •The prescribed use specifies 12 hours of treatment on the scalp.
- •Basically, children of different ages will be the population of concern.
- •These researchers chose to develop a PBPK model to be used as the predictive tool.
- •The computer simulation studies included children 3,
- 9, and 18 years of age, both genders included.



### **METHODS**

- A PBPK model includes all organs playing a role in malathion's distribution and disappearance.
- •The target organ for toxicity is also included.
- •Physiological changes across life stages are included in the model.
- •Malathion-specific partitioning into organs was calculated with tissue-composition equations.
- •Metabolic conversion to the toxic species was included.
- Application of rodent data and extrapolation to humans is possible.





#### **SAMPLE SIMULATIONS FOR A 9 YEAR OLD GIRL**

Target Concentration of malathion and the toxic species, malaoxon



Urinary rates for selected metabolites for same 9 year old girl





#### Summary

- •PBPK modeling was used to predict pharmacokinetics from rats to humans
- •PBPK modeling was the tool used to predict malathion exposure across different life stages.
- •Results of this PBPK modeling will impact the risk assessment for Ovide<sup>TM</sup>.
- •First time this approach has been used applied to the risk assessment of a pharmacological agent.
- •This exercise allowed for the creation of a template model which can be used for other pesticides.



## SOLVING AGENCY PROBLEMS